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Abstract: To understand the cropped areas and assess seasonal water supply for irrigation, remote sensing-based crop classification 

was conducted on satellite imagery data for a pilot area in the Bekaa Valley, Lebanon, during the 2011-2012 growing years. The crop 

classification was achieved using three sets of RapidEye and Landsat7 ETM+ (Enhanced Thematic Mapper Plus) images acquired in 

early (May), mid (July) and late (September) of 2011 and 2012 growing years, respectively. Field crop data were obtained throughout the 

growing seasons in well-defined farmers’ plots before the images acquisitions using a hand-held GPS (Global Positioning System) Unit. 

Ten crop classification profiles and three non-crop profiles were derived for each year from the different class signatures in the pre-

selected bands of the two satellite data. Then, image-derived results were checked for accuracy and used to produce cropping maps 

within GIS (Geographic Information System).These maps enabled us to define different cropping calendars and determine seasonal 

irrigation water requirements (IWRs) at the pilot area level. IWRs were calculated for the surveyed crops as the product of the produced 

cropping maps and net irrigation requirements (NIR)calculated by means of MOPECO(Economic Optimization Model for Irrigation 

Water Management). The results were compared with the Litani River Authority Database (LRAD) and found a good agreement. The 

classification results of RapidEye images (2011) compared quite well in the whole test area with Landsat derived crop maps (2012). The 

overall accuracy of the classification against the field data ranges from 84% to 95%. In addition, crop classification profiles appeared 

consistent with field crop observations, even though a slight variation was noted. The examination of the crop maps showed decreases of 

as much as 7%, 30% and 5%inbareland, woodland and fallow areas, respectively, in 2012 when compared to 2011. Data showed that 

these decreases were reported as increases in wheat (15%), fruit trees (11%), olive (6%), and vineyard (3%). The increased cropland that 

was observed in 2012 was accompanied by an increase in the amount of water allocated from the Canal 900 irrigation conveyor in 

comparison with that of 2011. This study presented an example of remote sensing application for water allocation in agriculture. It was 

concluded that satellite imagery was essential for the definition of the existing cropping patterns in the pilot area and helped better 

estimate seasonal irrigation needs at the scheme level. The proposed methodology may help irrigation deciders to better assess water 

resources with respect to the surveyed cropped areas. 
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1. Introduction 
 

The unavailability of reliable hydrological information about 

the actual water used by crops within irrigation schemes or 

at the whole basin level is a major constraint for sustainable 

management of water resources. Therefore, an estimation of 

the spatially distributed crop areas is important to determine 

crop water requirements and account for water balance at 

different scales of the irrigation scheme. This would 

promote efficient management of the limited water resources 

allocated to agriculture. 

 

Information concerning crop areas distribution and 

variability is becoming increasingly important for effective 

irrigation management. Remote sensing can resolve 

difficulties in determining and classifying crop types and 

acreage within irrigation schemes or at the water basin level. 

Remote sensing imagery obtained during the growing season 

can be used to generate crop maps for both in-season 

irrigation management and off-season cropping 

management. Therefore, remote sensed images can be useful 

for addressing water and other production-related issues 

within the irrigation scheme. On top of that, crop 

classification maps will help managers and decision-makers 

to allocate sufficient water quantities to assure economic 

yields over large geographic areas within the irrigation 

scheme. However, despite the commercial availability and 

increased use of satellite images for crop classification, 

many water utilities managing irrigation schemes are not 

equipped with them. Partly for a lack of financial resources 

and also for a lack of skilled personnel in charge of 

analyzing the images and interpreting them into readable 

maps. 
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Remote sensing, particularly satellite images, offers an 

immense source of data for studying spatial and temporal 

variability of the environmental parameters [1]. Remote 

sensing has shown a great promise in identifying crops 

within an agricultural area or irrigation scheme. The 

resultant information has been found to be useful for 

cropping patterns and allocation of water resources for 

improved crop production [2], [3], [4]. Practical applications 

using airborne or space borne broadband imagery and 

narrowband hyperspectral data have been focused on 

irrigated land identification and land use/land cover 

classification [5], [6], [7], [8], [9], [10], [11], monitoring of 

crop biophysical features and growth performance [12], 

[13], [14], [15], [16], [17], estimation of the crop 

evapotranspiration (ET), water consumption and 

hydrological cycle [18], [19], [20], [21], and biomass 

production and yield [12], [22], [23], [24], [25], [26]. 

 

For water consumption estimation, it is necessary to 

understand where the land is irrigated. This can be achieved 

by classification on satellite and airborne images to 

identifythe irrigated land [5], [9], [11], [26], [27] or by 

simple logical operation in combination of vegetation 

indices such as NDVI with land surface temperature(LST) to 

separate irrigated from non-irrigated land [10]. This 

procedure allows one to understand the distribution of the 

irrigated cropland and other land use pattern, and crop 

performance, in which the results provide useful reference 

for farmers and decision-makers, as water allocation can be 

made based on the balance between the availability of water 

and demand of croplands and other land use [18], [28]. 

 

However, remote sensing processing and interpretation 

should be based on and validated by ground-truth data [15], 

[16], [17]. Thus, land use investigation and soil surveys can 

be very helpful to identifying crop signatures and 

understanding the causes of stresses, for example, disease, 

water-deficiency and soil salinity [16], [17]. Satellite 

imagery in conjunction with ground sampling provides a 

possibility for crop classification in large areas where a little 

or no information is available on crop variability. In 

addition, images acquired on different dates of a cropping 

season will allow us to explore the phonological features and 

changes of crops. 

 

In this study, three RapidEye and three Landsat ETM+ 

satellite images acquired on different dates during the 2011- 

2012 growing years were used for a pilot area in the South 

Bekaa Irrigation Scheme (SBIS) in Lebanon. The aims were 

to analyze information from satellite images of varying 

spatial and temporal resolutions to derive crop maps and 

conduct intra-season and year-to-year monitoring to 

calculate the percentage change of crops in the growing 

years and assess irrigation water requirements at crop and 

the whole irrigation scheme levels for better water allocation 

strategies. 

 

2. Materials and Methods 
 

2.1. Study Area 

 

The study site, a pilot area of 2000 ha, is located in the 

South Bekaa Valley in Lebanon and constitutes a part of the 

South Bekaa Irrigation Scheme (SBIS). The scheme is 

divided into three irrigation districts distributed on the left 

bank (6700 ha), right bank (9200 ha) and northern bank 

(5600 ha) of the Litani River, thus totaling 21500 ha of 

irrigated land (Figure 1a). In 1994 the Litani River Authority 

(LRA), the public water utility responsible for irrigation 

projects along the Litani River Basin, entered a new water 

dispensation, which saw the rehabilitation of existing 

irrigation schemes including SBIS. LRA realized the 

importance of conducting irrigation studies and awarded a 

tender to equip SBIS with a pressurized irrigation network. 

For economic constraints, only a pilot area of 2000 ha is for 

the time being equipped with a pressurized irrigation 

network, while the rest of the scheme is still relying on 

ground wells for irrigation purposes. 

 

The pilot area is situated on the left bank of the Litani River 

and is inserted between the Canal 900 (900 m in average 

above the sea level) and the Litani River (860 m in average 

above the sea level). The pilot area is being supplied with 

water through the Canal 900,which is 18km in length and 

gains water by pumping from the adjacent Qaraoun Lake 

(220 x 10
6
 m

3
 at full capacity). The irrigation pilot area is 

subdivided into three sub-sectors; K1 (257 ha), K2 (450 ha) 

and Joub Jennine (1293 ha), as indicated in Figure 1b, all 

being equipped with pressurized irrigation networks. 
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Figure 1(a): Geographic location of South Bekaa Irrigation Scheme (21500 ha) and the study test area (2000 ha), (b): 

Geographical location of Canal 900 irrigation conveyor (K1, K2, and Joub Jennine subsectors; AVIS stands for the canal flow 

control system). 

 

The study area is characterized by a Mediterranean semi-arid 

climate, hot and dry from May to September, and cold and 

wet extending for the remainder of the year. Average 

seasonal rainfall is 850 mm, with 95% of the rain recorded 

from October to May and only 5% in April-May, calling 

most often for a drought during this period of the year, 

which coincides with the grain filling stage for wheat. No 

rain record in summer period in history (June - September). 

Generally, rain pattern shows a great year-to-year and 

monthly variability. In the 2010-2011 growing year, rain 

totaled 618 mm with 90% falling between October and 

March and 10% in April-May; whereas in the 2011-2012 

growing year,99% of the total rain (613 mm)fell between 

October and March and only 1% in April-May (Figure 2). 

Average annual potential evapotranspiration (ETp) as 

calculated by the FAO-modified Penman-Monteith equation 

[29] is 1185 mm, justifying the need for irrigation during 

late spring and summer periods. 
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Figure 2: Monthly rain pattern and average air temperature during the surveyed growing years (2010-2011 and 2011-2012) 

compared to the long-run averages (1990-2010) recorded at Kherbet Kanafar Training and Extension Center (SD = Standard 

Deviation). 

 

Temperature is strongly seasonal, with frequent frost periods 

in winter time that markedly limit vegetation development 

and slow wheat growth. Average winter temperature is 

10.8C, but minimum temperatures below -5C are 

common. Average temperature in summer is 25.8C, 

although maximum temperatures over 42C are frequent 

[30]. The 2011-2012 growing year was somehow cooler 

than the 2010-2011 growing year. This was observed by the 

lowest average monthly air temperatures that were recorded 

in 2011-2012 compared to 2010-2011 (Figure 2). Soils in the 

study area are characterized by high clay content and 

relatively low organic matter. Field slope is less than 2% and 

totally available water within the top 100 cm of soil profile 

is 190 mm [30]. 

 

Agricultural land in the study area consists of one-third of 

wheat and other winter cereals, mainly barley, one-third of 

potato and summer vegetables and one third of fruit trees, 

olive and vineyard and land kept as fallow during the in-

between seasons [31]. Wheat receives supplemental 

irrigation in April-May, and often, but not always, followed 

in the same fields by late-sown potato in July. In some years, 

the land cropped with wheat is left as fallow in summer till 

the next wheat sowing time in autumn (October-November). 

Summer vegetables include tomatoes, green beans, 

watermelon, cucumbers and bell pepper. Fruit trees include 

apples and peaches. Table 1 summarizes the different 

cropping patterns that exist in the test area. 

 

Table 1: Different cropping patterns that exist in the irrigated test area 

 
* Means ‘Fallow’ 

 

Usually, data of the irrigated areas per type of crop in the 

South Bekaa Irrigation Scheme can be obtained from the 

Litani River Authority Database (LRAD). However, LRAD 

is not often updated to permit an accurate estimation of crop 

types and acreage. This left farmers exposed to year-to-year 

fluctuations of supply and demand trends, which 

necessitated the requirement for more reliable crop 

production information. The Litani River Authority realized 

the importance of conducting accurate estimates of irrigated 

land per type of crop and conferred to the Litani River Basin 

Management Support Program (LRBMS), a five-year 

development program (2009-2014), the mandate to develop 

and implement a system to estimate cropped areas and 

forecast water allocation at yearly basis from the Canal 900 

irrigation conveyor to irrigate cropland and increase yields 

based on a geographic point sampling frame that is stratified 

according to crop types and areas. A system was designed 

and implemented by LRBMS where satellite imagery was 

used as a first step to stratify the Upper Litani River Basin 

(ULRB) across the Bekaa Valley by separating all non-

agricultural areas from agricultural areas. The agricultural 

areas were further classified into three crop categories: 

winter crops, spring and summer crops and fruit trees. A 

point grid was generated by LRBMS across the Upper Litani 

River Basin, which was used for a geographic systematic 

random selection of points, with an increased sampling rate 

in higher cultivation areas. These selected points were 

surveyed by LRBMS field staff to gather information on 

crop types and areas planted. In combining and integrating 

satellite imagery, remote sensing and GIS, a downscale 

system was developed for the test area of 2000 ha over the 

command area of the Canal 900 irrigation conveyor to 

demonstrate the feasibility of such a method and further 

application within the South Bekaa Irrigation Scheme. 

 

2.2.    Image processing and classification 

 

2.2.1 Satellite imagery and field data 

The selection and acquisition of imagery were important to 

provide a solid foundation for crop classification within the 

test area. For this purpose, three RapidEye and three Landsat 

ETM+ images were acquired over the pilot area in May, July 

and September to detect the vegetation types and assess the 

soil occupancy (Table 2). The dates of images acquisition 

were carefully defined on the basis of crop calendars, 

provided by the Litani River Authority. 
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Table2: Dates of RapidEye and Landsat7ETM+images 

taken in this study. 

Date Sensor 

23 May 2011 RapidEye 

15July 2011 RapidEye 

26 September 2011 RapidEye 

6May 2012 Landsat7ETM+ 

9July 2012 Landsat7ETM+ 

27September 2012 Landsat7ETM+ 

 
RapidEye satellites provide multispectral images, which 

consist of five bands (three in the visible region – blue, 

green and red, one in the red edge and one in the near 

infrared regions). This product has a high spatial resolution 

(5 m), which enables to detect relatively small features on 

the ground. With this fine ground sampling, RapidEye 

constitutes a high potential for the application of agricultural 

monitoring [32]. With this fine ground sampling, RapidEye 

constitutes a high potential for the application of agricultural 

monitoring. However, given that its imagery only contains 

two bands in the infrared range, it restricts the differentiation 

between elements with characteristics that are similar to 

each other. For example, by using RapidEye images we can 

identify small planted areas, but we cannot neither 

distinguish between two types of fruit trees (e.g., apple and 

peach) nor use it for evapotranspiration (ET) estimation 

since there is no thermal band. This product was used in this 

study for the analysis during the 2011 cropping year. 

 

Landsat7ETM+imagesprovide multispectral images that can 

be downloaded for free from the USGS server 

(http://glovis.usgs.gov/). Spectral bands include three in the 

visible range (blue, green, and red),one in the near-infrared, 

two in the mid-infrared, and two in the thermal infrared 

regions, and last, one panchromatic band. This product has a 

relatively lower spatial resolution (15-30 m), which prevents 

us from detecting small areas, but given its wider spectral 

coverage, it enables us to detect more different types [33], 

[34], [35]. This product was used for the analysis during the 

2012 survey year. 

 

RapidEye and Landsat data were considered suitable for this 

study as these satellites were designed mainly for monitoring 

agricultural and natural resources either based on multi-

temporaland time-seriesanalysis to understand land use 

dynamics and biophysical change in time or using 

classification-based techniques to quantify and qualify the 

land cover features of the observation time point [26], [27], 

[32], [36]. In addition, multi-temporal analysis based on 

several image acquisitions can serve to identify different 

croplands and also filter out the temporarily harvested 

agricultural fields or fallows in terms of the phonological 

cycles of crops. Other types of land such as forest, 

woodland, urban areas and water bodies, can be efficiently 

extracted from single RapidEye and Landsat ETM+ images 

by classification or decision-tree techniques. 

 

In order to detect the different crop types and generate a 

signature for each crop type, we conducted pre-image 

acquisition field surveys to observe location and 

performance of different crops using a handheld Geographic 

Position System (GPS) device. In general, it is 

recommended to collect 3-4 field samples per type of crop to 

generate an accurate and comprehensive signature. 

However, as the study area had to be covered by multiple 

images taken at different dates, we decided to take an 

average of eight samples per crop type to guarantee the 

availability of field samples within all of these various 

images. 

 

In this study, thirteen spectral classes including ten crop 

classes and three non-crop classes were defined based on the 

field survey and other ancillary data from the National 

Agricultural Census Database [37]. These data allowed us to 

categorize and identify the following classes of crops: (i) 

wheat, (ii) winter legumes, (iii) potatoes, (iv) summer 

vegetables, and (v) fruit trees. At this point we also made 

decisions on which classes can be grouped together into a 

single land use type. As a result, eight classes out of the ten 

identified agricultural classes were re-assigned to the eight 

major crops in the area (corn, field crops, fruit trees, olive, 

potato, tobacco, vineyard and wheat), while two classes 

were re-assigned to bareland that is uncropped land and land 

kept as fallow in the intra-season periods. Most of the bare 

areas included degraded soils and areas not accessible for 

agriculture. Crops with substantial overlap in the signature 

were grouped in the same spectral class. In the case of fruit 

trees the selected crops were apple and peach, while in the 

case of field crops they were bean, peas, lettuce, onion, and 

tomato. In addition, three classes namely urban, water and 

woodland were retained as non-agriculture classes. For the 

scope of this study, only those classes associated with crops 

were retained for analysis. 

 

2.2.2 Processing methodology 

The methodology used for generating crop coverage during 

the various images dates was the supervised classification of 

multispectral satellite images, which is one of the major 

techniques available in remote sensing [11], [27], [36], [38], 

[39], [40]. By using the supervised classification procedure, 

and selecting the maximum likelihood classifier, a zonal 

majority function can be used to assign a crop class to each 

field boundary polygon based on the raster classification. 

Ferreira et al. (2006) [38] have demonstrated that this 

procedure can give accurate results as per crop identification 

and classification, however, may contain confusion for land 

cover categories which are intergrading in spectral features, 

e.g., from urban to bareland [11]. Certain post-classification 

processing such as visual interpretation and re-allocation of 

the misclassified pixels to their proper classes is necessary 

[11]. Signature files can be generated for each cropland 

taking the phenology of each crop type into consideration. 

 

The supervised classification involves first of all a selection 

and definition of appropriate training samples of particular 

signatures for different types of crop and other land cover. 

These signatures form a solid foundation for the subsequent 

crop classification [41]. The classification can be conducted 

on the whole images including all bands as input, or on a 

reasonable combination of bands, e.g., bands 7, 4 and 1 for 

Landsat TM and ETM+ imagery, because bands 1, 2 and 3 

are correlated with each other and so are bands 5 and 7 [42]. 

To avoid information redundancy in bands and to save 

classification time, we can select one of the three bands in 

the visible region, one in the near infrared (i.e., band 4) and 

one in the shortwave spectral region (band 5 or 7) for this 
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purpose. It is also possible to choose the first three Principal 

Components (PCs), e.g., PC1, PC2 and PC3, to compose the 

most relevant band combination [42] to discriminate 

different crop types in the study area. Generally, the red 

band along with the infrared bands provides the strongest 

contrast in reflectance of vegetation and hence may facilitate 

the crop separation [15], [38]. In addition, the red edge band 

(690-730 nm) allows better estimation of the ground cover 

and chlorophyll content of the vegetation [43], [44], [45]. 

 

By overlapping field samples to the satellite images, the 

spectral signature for each crop type was then calculated 

based on the coincidence of these samples with the various 

available bands. Using the maximum likelihood classifier 

and combining the generated signatures as training areas, it 

was possible to classify the whole pilot site into the defined 

land cover classes. With this classification, images 

underwent a series of enhancement techniques to remove 

noises and cleanup the boundaries between adjacent areas of 

different types, and eventually convert different classes into 

vector polygons for further analysis and mapping. It is 

important to note that this methodology is based on a 

probabilistic approach and has to be repeated several times 

for each image until an accurate result is reached. An 

accurate result is defined as a result that matches 80% or 

more of the field samples [46]. 
 

After the supervised classification procedure, a zonal 

majority function can be applied to assign a crop type to 

each field boundary polygon. This step generated an 

ArcView shape file with a crop type for each field during a 

specific season for the study area, and even for the entire 

province if necessary, providing a basis for various queries 

and analysis. 

 

2.2.3 Statistical Tests 

Intra year and inter year comparisons of mapped irrigated 

areas of the various surveyed crops were made using the 

percent difference (Pd) method [47]. This method is used to 

compare two quantities neither of which is known to be 

correct [48]. Equation 1 was used to calculate the percent 

difference: 

 (1) 

Where A and B are the remotely sensed irrigated areas for a 

given crop class at two different dates. For inter year 

comparisons, „A‟ and „B‟ represent the remotely sensed 

irrigated areas in 2011 and 2012, respectively. For intra year 

comparisons, „A‟ and „B‟ represent the remotely sensed 

irrigated areas of the different crops classes in two 

successive surveyed times: the first is May-July and the 

second July-September. As a result, a positive value 

obtained with equation (1) indicates an increase in the 

irrigated area, while a negative value indicates a decrease in 

the irrigated area. 

 

2.2.4 Accuracy determination 

Each classification test was evaluated in terms of overall 

accuracy (OA) and kappa coefficient, by comparing the 

reference data with the classified images, pixel by pixel [33]. 

Despite the fact that both the OA and Kappa coefficient 

measure the agreement between the classified map and the 

reference data, Kappa is often considered a better indicator 

of classification performance because it excludes chance 

agreement [49]. Gonçalvez et al. (2007) [50] demonstrated 

that overall accuracy and kappa coefficient are common 

statistics used to validate remotely sensed data. In this study, 

we used both indicators to evaluate our classification results. 
 

2.3. Determination of irrigation water requirements 
 

Irrigation water requirements during the 2011-2012 growing 

seasons were estimated using the MOPECO model [51], 

which uses the methodology proposed by Allen et al. (1998) 

[29]. For the daily simulation of the soil-water balance, the 

model requires the reference evapotranspiration (ETo), the 

single crop coefficient (Kc), the group of evapotranspiration, 

the soil properties as water content at field capacity and 

permanent wilting point, the root depth, the effective 

rainfall, and the irrigation schedule. 

 

2.3.1 Effective precipitation 

Effective rainfall (Pe) was estimated by using the USDA 

“curve number 2 methodology” (NRCS, 2004). The curve 

number used was different according to the crop (Table 3), 

while the rest of parameters were: Hydrologic soil group 

“D”; “Good” hydrologic condition; and “Contoured labor” 

(land slope < 2%). 

 

Table 3: Crop parameters used by MOPECO for simulating the irrigation water requirements 

Crop 

Start. 

date 

Harv. 

date 

Curve 

nb 

ET 

Group 
Kc 

(initial)3 
Kc 

(mid)3 
Kc 

(end)3 
Root 

depth3 TU TL Duration (GDD ºC)18 

month month dimensionless dimensionless (m) (ºC) (ºC) 
Kc 

(I) 

Kc 

(II) 

Kc 

(III) 

Kc 

(IV) 

Potato Mar July 83 11 0.45 1.05 0.75 0.6 264 24 170.9 487.1 1076.5 1661.1 

Maize May Sept 83 41 0.30 1.20 0.60 1.7 305 85 189.5 551.7 1149.8 1588.7 

Wheat Nov June 83 31 0.70 1.15 0.40 1.8 4017 66 147.5 537.8 901.6 1359.9 

Tobacco June Sept 83 41 0.35 1.10 1.10 0.6 35 15 196.2 609.7 748.6 875.2 

Olive April Nov 86 41 0.65 0.70 0.70 1.7 4017 3.57 312.1 1931.8 2955.1 3601.6 

Grapes April Sept 86 21 0.30 0.70 0.45 2.0 4017 108 92.7 633.3 1296.6 1638.6 

Apple April Sept 86 31 0.45 0.95 0.70 2.0 369 59 179.6 1009.4 2250.5 2696.1 

Peach April July 86 32 0.45 0.90 0.65 2.0 3510 710 142.5 707.3 1665.9 2100.0 

Bean May July 83 31 0.50 1.05 0.90 0.7 3211 5.112 216.2 674.5 1207.2 1589.7 

Peas Mar July 83 22 0.50 1.15 1.10 1.0 3213 -1.112 308.2 738.4 1370.5 1728.1 

Lettuce April June 84 12 0.70 1.00 0.95 0.5 2214 614 125.7 405.8 590.8 732.8 

Onion April Aug 84 11 0.70 1.05 0.75 0.6 4017 515 105.4 320.0 1322.8 1975.4 

Tomato May Aug 84 21 0.60 1.15 0.70 1.5 3516 7.316 162.6 521.9 1148.5 1622.1 
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Where: Kc (I): Initial; Kc (II); Crop development; Kc (III): 

Mid-season; Kc (IV): Late season; TL: lower threshold 

temperature for development; TU: upper threshold 

temperature at which the rate of development begins to 

decrease; GDD: growing-degree-days; 
1
 Danuso et al. 

(1995); 
2
 Based on Doorenbos and Kassam (1979); 

3
 Allen et 

al. (1998); 
4 

Montoya (2013); 
5
 López-Bellido (1991); 

6
 

Rawson et al. (2007); 
7
 Bignami et al. (1999); 

8
 WSU 

(2015); 
9
 Lachapelle (2012); 

10
 Marra et al. (2002); 

11
 

Hernandez-Armenta et al. (1989); 
12

 Raveneau et al. (2011); 
13

 SARE (2012); 
14

 Brunini et al. (1976); 
15

 Lancaster et al. 

(1996); 
16 

Jaworski and Valli (1964); 
17

 if the crop is not 

affected by TU a value equal to 40ºC was considered, which 

is higher than the maximum temperature in the area; 
18

 

Lebanese Agricultural Research Institute (LARI). 

 

2.3.2 Reference evapotranspiration 

Reference evapotranspiration (ETo) was calculated using the 

model of FAO modified Penman-Monteith [29] at daily 

bases during the 2011-2012 growing seasons. Average 

monthly values of precipitation, barometric pressure, relative 

humidity, solar radiation, temperature, and wind speed data 

used to calculate reference evapotranspiration were obtained 

from the weather station of Kherbet Kanafar Training and 

Extension Center of Litani River Authority. The FAO 

modified Penman-Monteith model was shown to have a 

large application in arid and sub-humid areas [29]. 

 

2.3.3 Crop evapotranspiration 

Daily ETm is calculated using the equation proposed by 

Doorenbos and Pruitt (1977) [52], which requires values for 

Kc at each growth stage and daily reference 

evapotranspiration (ETo) [29] (Table 3). 

    (2) 

ETm and ETo are expressed in mm day
-1

 and Kc is 

dimensionless. 

 

2.3.4 Determination of the duration of the crop stages 

The climatic conditions of any particular year may affect the 

duration of days in the phenological stages. Thermal time 

expressed as accumulated growing-degree-days (GDD) is a 

widely used methodology [53]. To obtain the length of each 

growth stage in terms of GDD (Table 3), the double 

triangulation method [54] was used. This methodology 

requires the value of the lower threshold temperature for 

development (TL) and the upper threshold temperature at 

which the rate of development begins to decrease (TU) 

(Table 1). The development stages considered in this study 

were those corresponding to each Kc stage: Kc (I): initial; Kc 

(II): crop development; Kc (III): mid-season; and Kc (IV): 

late season [29]. The length of each stage was determined 

using experimental data conducted on the surveyed crops 

during the period of 1998-2009 at the Department of 

Irrigation and Agro-Meteorology of the Lebanese 

Agriculture Research Institute. 

 

2.3.5 Determination of net irrigation requirements  

Under no deficit irrigation conditions, the amount of 

irrigation water to be supplied to the crop is calculated by 

the model in order to maintain the soil moisture content 

between field capacity and the soil moisture content when 

the crop would be stressed by water deficit. The 

methodology used for determining the daily value of this 

point is described by Danuso et al. (1995) [55] and is based 

on the evapotranspiration group of the crop (Table 3), and 

the Kc and ETo values. 

 

Due to tree crops (grape, olive, apple, and peach) are 

irrigated using drip irrigation systems, a localization 

coefficient was included in the model. The value used by the 

model is the enclosed average of the values calculated by the 

methodologies proposed by Aljibury et al. (1974) [56]; 

Hoare et al. (1974) [57]; Keller and Karmeli (1974) [58]; 

Savva and Frenken (2002) [59]. The frame of plantation and 

the diameter of the top are the required data (Table 4). 

 

Table 4: Localization coefficient (Kl) of tree crops 

Crop 
Top diameter 

(m) 

Plantationframe 

(m × m) 

Kl 

(dimensionless) 

Olive 3.00 7.0 × 5.0 0.31 

Grapes 0.75 2.8 × 1.4 0.23 

Apple 1.50 3.0 × 3.0 0.31 

Peach 1.00 3.0 × 2.0 0.25 

 

2.3.6 Determination of gross irrigation requirements 

Net irrigation requirements (NIR) calculated by MOPECO 

for each crop and year were translated into gross irrigation 

requirements (GIR), which was obtained by dividing the net 

irrigation requirements (NIR) by irrigation efficiency at unit 

farm level (Eu): 

                (3) 

Eu is the product of the irrigation system efficiency (Eis), 

distribution uniformity (DU) and conveyance efficiency 

(Ec). In the case of sprinkler irrigation, Eu was equal to 0.70 

(87% of irrigation system efficiency, 85% of distribution 

uniformity and 95% of conveyance efficiency), while in the 

case of drip irrigation it was equal to 0.85 (95% of irrigation 

system efficiency, 95% of distribution uniformity and 95% 

of conveyance efficiency) [60], [61], [62], [63]. 

 

Water demand (in m
3
) per crop was obtained by multiplying 

GIR (in mm) by the area (in hectares) determined for each 

crop by the satellite imagery. Total water demand (in m
3
) 

within the test area was then obtained by summing up water 

demand of each individual crop and/or group of crops. Since 

“Fruit trees” and “Field crops” categories do not distinguish 

among individual crops, the main crops under these two 

categories were selected for determining NIR and GIR. For 

“Fruit trees” the selected crops were apple and peach, while 

for “Field crops” they were bean, peas, lettuce, onion, and 

tomato (Table 5). The percentage of each single crop within 

these two classes was determined as the ratio of the 

cultivated area of the crop over the total area of the crop 

class, both obtained from the FAOSTAT database for 

Lebanon [64]. 
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Table 5: Percentage of individual crops in the area of “Tree 

crops” and “Field crops” categories 

  
Area1(ha) Percentage (%) 

Fruit trees 
Apple 14000 79.3 

Peach 3650 20.7 

Field 

crops 

Bean (green) 2550 17.9 

Peas 1000 7.0 

Lettuce 2800 19.6 

Onion (dry) 3400 23.9 

Tomato 4500 31.6 
1
 FAOSTAT/Lebanon (2015). 

 

3. Results and Discussion 
 

3.1. Image Crop Classification 

 

The results of the supervised crop classification in the 

surveyed periods are given in Table6. In order to understand 

the different cropping patterns that may occur in a given 

irrigation scheme, one should know the rotation of crops in 

the same patch of land. Satellite images taken at three 

different times of the growing season allowed us to identify 

twenty-six crop rotation patterns for the nine surveyed 

agricultural classes (corn, fallow, field crops, fruit trees, 

olive, potato, tobacco, vineyard and wheat), in addition to 

one for bareland and three for the non-agricultural classes 

(water, urban and woodland). Total imaged area was 2697.1 

ha in 2011 and 2597.59 ha in 2012 (Table 6). The twenty-six 

crop rotation patterns identified in Table 6 represent the 

different agricultural combinations that may take place in the 

test area in the growing season. For example, early grown 

potato that is sown in March and harvested in July gives two 

different cropping combinations, which are potato-fallow-

fallow (combination 17) and potato-fallow-field crop 

(combination 18). Moreover, late-grown potato can follow 

early-grown potato in the same plot, giving thus other two 

crop rotation patterns, which are potato-potato-corn 

(combination 19) and potato-potato-fallow (combination 

20). 

 

The first results obtained for the test area indicate that both 

agricultural and non-agricultural features can be detected 

with high accuracy. For the test area, Table 6 shows that 

445.30 ha (16.5%) out of 2697.10 ha is non-agricultural land 

in 2011, while it was 455.50 ha (17.5%) out of 2597.59 ha in 

2012. The potentially agricultural land accounts for 83.5% in 

2011 and 82.5% in 2012.Bareland and woodland were 

correctly validated as non-agricultural areas and account for 

14.2% and 3.9%, respectively, in 2011 and 13.7% and 3.1%, 

respectively, in 2012, of the total surveyed area.  

 

By combining and summarizing the imaged crops and their 

cover areas in Table 6, a table containing the total area of 

each crop can be generated for each surveyed period (Table 

7). In 2011, the cultivated areas were 2259.9 ha in May, 

2260.0 ha in July and 2235.5 ha in September, giving thus 

an average of 2251.8 ha, while in 2012 the cultivated areas 

were 2169.8 ha in May, 2122.0 ha in July and 2134.5 ha in 

September, giving an average of 2142.09 ha. When we 

compare the percent difference (Pd) values of the different 

surveyed features during the growing periods, non-

agricultural features (bareland, water, urban and woodland) 

show no or very little change in land cover, while 

agricultural features show significant intra-season changes, 

except for fruit trees, olive and vineyard, where intra-season 

changes were reported null (Table 7). In the case of potato, 

being the most important crop in the study area, the percent 

difference values in May-July were 60.2% and 1.8% in 2011 

and 2012, respectively. Based on Pd values, we found that 

the overall classification for single years 2011 and 2012 was 

not significantly different from each other, but there were 

significant differences for all crop classifications in the 

different periods as shown in the inter-year comparisons in 

Table 7. From this table, a comparison made between years 

leads to observe that the cultivated areas in 2012 decreased 

by 3.0%, 4.8% and 3.4% in May, July and September, 

respectively, compared to the same periods in 2011. An 

average comparison made between the 2011 data versus data 

for the 2012 growing year shows a minor decrease of 3.8% 

of the cultivated land in 2011 compared to 2012 (Table 8). 

In addition, Table 8 demonstrated that average percentage of 

agricultural land over total land was 83.5% in 2011 and 

82.5% in 2012. 

 

In both years, 27% of the surveyed area was land kept as 

fallow, while the percentage of bareland was 17% (Figure 

3). In 2011, field crops occupied 14%, followed by potatoes 

(12%), vineyard (10%), fruit trees (8%), wheat (7%) and 

corn (2%). In 2012, potato occupied 14%, followed by 

vineyard (11%), fruit trees (9%), wheat (9%) and 5% as 

corn, as shown in Figure 3. 
 

 
Figure 3: Comparison of agricultural land use in both 

surveyed years (2011 and 2012). 
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Table 6: Results of the supervised crop classification 

Combination 

Num. 

Set 1 

(May-June) 

Set 2 

(July-Aug) 
Set 3 (Sept-Oct) 

Area (ha) Cover  (%) Area (ha) Cover  (%) 

2011 2012 

1 Bareland Bareland Bareland(1) 382.70 14.19 356.50 13.72 

2 Corn Corn Fallow 3.21 0.12 3.09 0.12 

3 Fallow Corn Fallow 9.61 0.36 9.26 0.36 

4 Fallow Fallow Fallow 146.99 5.45 121.44 4.68 

5 Fallow Fallow Field Crop 40.41 1.50 38.92 1.50 

6 Fallow Field Crop Fallow 36.90 1.37 35.54 1.37 

7 Fallow Field Crop Field Crop 99.93 3.71 96.26 3.71 

8 Fallow Potato Fallow 57.62 2.14 55.49 2.14 

9 Fallow Tobacco Fallow 1.27 0.05 1.23 0.05 

10 Fallow Tobacco Field Crop 4.49 0.17 4.32 0.17 

11 Field Crop Corn Corn 29.25 1.08 28.18 1.08 

12 Field Crop Corn Fallow 7.02 0.26 6.76 0.26 

13 Field Crop Fallow Alfalfa 78.37 2.91 75.49 2.91 

14 Field Crop Fallow Fallow 128.76 4.77 124.00 4.77 

15 Fruit Tree Fruit Tree Fruit Tree 168.58 6.25 190.30 7.33 

16 Olive Olive Olive 70.10 2.60 74.10 2.85 

17 Potato Fallow Fallow 2.42 0.09 2.33 0.09 

18 Potato Fallow Field Crop 2.93 0.11 2.82 0.11 

19 Potato Potato Corn 25.30 0.94 24.37 0.94 

20 Potato Potato Fallow 64.88 2.41 62.48 2.41 

21 Tobacco Tobacco Fallow 4.83 0.18 4.65 0.18 

22 Tobacco Tobacco Field Crop 4.71 0.17 4.54 0.17 

23 Urban Urban Urban(2) 335.20 12.43 368.40 14.18 

24 Vineyard Vineyard Vineyard 236.60 8.77 242.60 9.34 

25 Water Water Water(3) 4.70 0.17 6.40 0.25 

26 Wheat Corn Corn 8.02 0.30 7.72 0.30 

27 Wheat Corn Fallow 54.47 2.02 52.47 2.02 

28 Wheat Fallow Fallow 233.17 8.65 244.65 9.42 

29 Wheat Fallow Potato 349.24 12.95 272.60 10.49 

30 Woodland Woodland Woodland(4) 105.40 3.91 80.70 3.11 

Total surveyed area 2,697.10 100.00 2,597.59 100.00 

Area of agricultural combinations 2251.8 83.48 2142.09 82.46 

Area of non-agricultural combinations 445.30 16.52 455.50 17.54 
(1), (2), (3), (4)

 are non-agricultural combinations 

 

Table 7: Intra-year and inter-year crop changes in the test area as observed by RapidEye and Landsat7 ETM+during the 2011 

and 2012 growing years, respectively 

Study area 

Class 

Intra-season comparisons (2011) 

(ha) 

Intra-season comparisons (2012) 

(ha) 

Inter-year comparisons 

(%) 

 

MAY JUL SEP MAY-JUL JUL-SEP MAY JUL SEP 
MAY-

JUL 

JUL-

SEP 
MAY JUL SEP 

Bareland 382.7 382.7 382.7 0.0 0.0 356.5 356.5 356.5 0.0 0.0 -7.1 -7.1 -7.1 

Corn 3.5 63.5 57.6 178.9 -9.6 0.0 72.2 247.1 200.0 109.5 -200.0 12.9 124.3 

Fallow 418.0 587.7 787.9 33.7 29.1 135.2 678.7 887.0 133.6 26.6 -102.2 14.4 11.8 

Field crops 251.9 138.0 531.0 -58.4 117.5 199.9 96.7 47.2 -69.6 -68.8 -23.0 -35.2 -167.4 

Fruit trees 169.7 169.7 169.7 0.0 0.0 190.3 190.3 190.3 0.0 0.0 11.4 11.4 11.4 

Olive 70.1 70.1 70.1 0.0 0.0 74.1 74.1 74.1 0.0 0.0 5.6 5.6 5.6 

Potato 237.3 596.3 0.0 86.1 -200.0 403.5 410.9 89.8 1.8 -128.3 51.9 -36.8 200.0 

Tobacco 9.1 15.5 0.1 51.6 -197.4 0.1 0.1 0.0 0.0 -200.0 -195.7 -197.4 -200.0 

Vineyard 236.6 236.6 236.6 0.0 0.0 242.6 242.6 242.6 0.0 0.0 2.5 2.5 2.5 

Wheat 481.0 0.1 0.1 -199.9 0.0 567.8 0.1 0.1 -199.9 0.0 16.5 0.0 0.0 

Cultivated area (ha) 2259.9 2260.0 2235.7 0.0 -1.1 2169.9 2122.2 2134.6 -2.2 0.6 -4.1 -6.3 -4.6 

Water 4.7 4.7 4.7 0.0 0.0 6.4 6.4 6.4 0.0 0.0 30.6 30.6 30.6 

Urban 335.2 335.2 335.2 0.0 0.0 368.4 368.4 368.4 0.0 0.0 9.4 9.4 9.4 

Woodland 105.4 105.4 105.4 0.0 0.0 80.7 80.7 80.7 0.0 0.0 -26.5 -26.5 -26.5 

Total area (ha) 2705.2 2705.3 2681.0 0.0 -0.9 2625.4 2577.7 2590.1 -1.8 0.5 -3.0 -4.8 -3.4 

Cultivated area as a 

% of total area 
83.5 83.5 83.4 

  
82.7 82.3 82.4 

  
-1.1 -1.5 -1.2 
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Table 8: Summary of the comparisons of crop classification 

between 2011 and 2012 

 

Inter-year comparison 

Class 

2011 

(ha) 

2012 

(ha) 

Change (%) 

(+ increase, - 

decrease) 

Bareland 382.7 356.5 -7.1 

Corn 41.5 106.4 87.7 

Fallow 597.8 567.0 -5.3 

Field crops 307.0 114.6 -91.3 

Fruit trees 169.7 190.3 11.4 

Olive 70.1 74.1 5.6 

Potato 277.9 301.4 8.1 

Tobacco 8.2 0.1 -196.8 

Vineyard 236.6 242.6 2.5 

Wheat 160.4 189.3 16.5 

Cultivated area (ha) 2251.9 2142.2 -5.0 

Water 4.7 6.4 30.6 

Urban 335.2 368.4 9.4 

Woodland 105.4 80.7 -26.5 

Total area (ha) 2697.2 2597.7 -3.8 

Cultivated area as a % of 

total area 83.5 82.5 -1.2 

 

Figure 4 shows stacked images composed by different 

detected crop classes and taken at three consecutive periods 

across the growing season from May through October. 

Analysis of the stacked crop maps clearly highlights 

permanent bare areas, natural woodland and water bodies. 

The cropped areas appear to be either one of the eight crop 

classes or land kept as fallow in the intra-season periods in 

preparation of the next growing season. The latter represents 

18.4, 24.2 and 33.1% of the cultivated area in May, July and 

September 2011, respectively, and 6.2, 31.9 and 36.8% in 

the same periods, respectively, in 2012. On the maps, the 

land kept as fallow appears in red color, while a light-brown 

color indicates potential bare areas, whereas pale yellow as 

corn, dense green as field crops, light violet as fruit trees, red 

as olive, dark brown as potato, light green as tobacco, dense 

violet as vineyard and earth color as wheat. Woodland 

appears in dense green color. Our results showed that the 

inclusion of all nine agricultural classes, along with the 

bareland class and non-agricultural classes versus land use 

resulted in almost identical maps (Figure 4). 

 

 
Figure 4: Maps showing temporal crop classification results in 2011 and 2012 growing years (crop type labels for real data: 

yellow = corn, red = fallow, dark green = field crop, pink = fruit trees, light red = olive, brown = potato, light green = tobacco, 

violet = vineyard, light brown = wheat). 
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The results of the accuracy assessment of the classified 

maps, including overall accuracy (OA) and kappa 

coefficient, are presented in Table 9. As shown in this table, 

there was a good agreement between the classified maps and 

ground-truth data, which varied between 84% and 95% in 

overall accuracy, and between 0.71 and 0.91 in Kappa 

coefficient. We believe that our crop classification is of high 

reliability. 

 

3.2. Estimation of irrigation needs based on satellite 

images 

 

Table 10 shows irrigated crop areas in Canal 900 test area as 

determined by the remote sensing images, net irrigation 

requirements (NIR) and gross irrigation requirements (GIR) 

as simulated by MOPECO model during the 2011 and 2012 

growing seasons. The simulations show that there were 5.16 

Mm
3
 (million cubic meter) and 5.58 Mm

3
 of water used to 

irrigate the remotely sensed 1271.3 ha and 1218.7 ha of 

cropland in the test area during the 2011 and 2012 growing 

seasons, respectively. The simulations also demonstrated 

that 28.4% and 32.6% of the simulated irrigation volume 

were used for potato in 2011 and 2012, respectively, while 

wheat consumptions were 12.2% and 18.6% of total water 

demand in 2011 and 2012, respectively. Simulations also 

showed that corn irrigation use has increased from 6% of 

total water demand in 2011 to 16.1% in 2012, as the area 

cropped with corn increased by 87.7% in 2012 with 

comparison to 2011 (41.5 ha). In addition, table 10 

demonstrates that gross irrigation requirements of field crops 

(beans, peas, lettuce, onion and tomatoes) decreased from 

40% in 2011 to 18.3% in 2012. This decrease in irrigation 

water demand was mainly due to a sharp decrease in the area 

cultivated with field crops from 307 ha in 2011 to 114.6 ha 

in 2012, as marked in table 8. The ratio of irrigation volume 

(in m
3
) to total irrigated area (in ha) gives the irrigation 

module (in m
3
/ha), which equaled 4060.3 m

3
/ha in 2011 and 

4579.4 m
3
/ha in 2012, and both were lower than the 

irrigation module of 6500 m
3
/ha set by the Litani River 

Authority. 

 

Figure 5 compares simulated irrigation demand from the 

remotely sensed data and MOPECO model with that 

obtained by the Litani River Basin Database (LRAD) for 

Canal 900 test area during the 2011 and 2012 growing years. 

The comparison shows a good agreement between 

simulations and observations in 2011 but not in 2012. 

Irrigation water demand obtained by LRAD was 5.74 Mm
3
in 

2011 and 7.16 Mm
3
 in 2012, thus overestimating by 10% 

and 22% the simulated irrigation volumes by MOPECO in 

2011 and 2012, respectively. Most probably the differences 

between simulations and observations that were found in 

2012 may be caused by corn, the one cropped area increased 

remarkably in 2012 with comparison to 2011, thus 

increasing irrigation requirements by 65% in 2012 with 

comparison to 2011. Indeed, data reported by Litani River 

Authority observed 20% increase in total irrigation demand 

in 2012 with comparison to 2011 within Canal 900 test area. 

This increase might be attributed to the relatively high 

irrigation requirements of corn with comparison to other 

cultivated crops in the area. Karam et al. (2003) [65] 

demonstrated that corn seasonal evapotranspiration in the 

Bekaa Valley of Lebanon varies between 900 and 1000 mm 

for a growing season of 120-130 days from sowing till 

harvest. It is necessary therefore that farmers efficiently use 

water resources for irrigation of corn and other crops in 

South Bekaa Irrigation Scheme (SBIS) for better water 

supply-demand management. 

 

Table 9: Overall accuracy and Kappa coefficient of each 

classification for both sensors according to the selected 

images 

Sensor type Acquisition date Overall 

accuracy (%) 

Kappa 

coefficient 

RapidEye 23 May 2011 87.80 0.7754 

15 July 2011 94.40 0.9005 

26 September 

2011 

85.40 0.7277 

Landsat ETM+ 6 May 2012 84.80 0.7155 

9 July 2012 95.20 0.9151 

27September 84.40 0.7074 

 

Table 10: Irrigated crop areas in Canal 900 test area (ha) as determined by remote sensing images, net irrigation requirements 

(NIR) and gross irrigation requirements (GIR) as simulated by MOPECO model during the 2011 and 2012 growing seasons. 

  

Area (ha) NIR (mm) GIR (m3) Irrigation module (m3/ha) 

2011 2012 2011 2012 2011 2012 2011 2012 

Corn 41.5 106.4 629.1 846.2 308065.1 900328 

    

Bean 54.9 20.5 516.4 484.6 334786.9 138371.2 

Peas 21.5 8 383.8 328.8 97581.4 36813.9 

Lettuce 60.3 22.5 319.9 323.5 227685 101415.5 

Onion 73.2 27.3 743.9 860 643009.5 327410.7 

Tomato 96.9 36.2 685 827.1 783634.1 416756.4 

Apple 134.6 150.9 153.6 143.5 231600.4 286226.3 

Peach 35.1 39.4 99.9 98.3 39271.3 51137.3 

Olive 70.1 74.1 176.4 194 138464.1 189949.3 

Potato 277.9 301.4 446.7 434.3 1464736.3 1822656.8 

Tobacco 8.2 0 531.2 484 51397.2 0 

Vineyard 236.6 242.6 78.8 86.4 208724.7 277049.3 

Wheat 160.3 189.3 334.6 391.8 632845.5 1032825.2 

  1271.3 1218.7             

Total water demand (m3)         5161801.4 5580940 4060.3 4579.4 
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Figure 5: Comparison of observed and MOPECO simulated irrigation water use in 2011 and 2012 growing years 

 

4. Conclusions 
 

The methodology proposed in this paper offers a 

management tool for annual inventory and monitoring of 

cultivated lands in the test area within the South Bekaa 

Irrigation Scheme (SBIS). Using RapidEye and Landsat 

ETM+ imagery, a supervised classification of multi-

temporal data was performed that quantified agricultural and 

non-agricultural areas at the growing seasons. Preliminary 

results clearly indicate that multi-temporal remote sensing 

classification can effectively contribute to differentiate 

between croplands and non-croplands, which are considered 

unsuitable for agriculture although further attempts to 

validate this methodology in other irrigation scheme is 

necessary. 

 

Understanding the contribution of spatial and temporal 

monitoring of the vegetation variation is critical to estimate 

irrigation needs of the various crops within a given scheme. 

However, information on vegetation cover in the temporal 

dimension is most often unavailable. This approach provides 

a convenient pathway towards the discussion about a 

relevant crop classification plan in a given area. Such a plan 

may lead to a wealth of crop information within the temporal 

dimension, based on the understanding that remotely sensed 

spatio-temporal crop information is imperative for effective 

agricultural management. 

 

Through integrating and combining remote sensing 

technology it was possible to identify crop type and cropped 

area estimates for the irrigation needs in a test area in the 

South Bekaa Irrigation Scheme, while generating multi-

temporal maps showing the spatial distribution of crop type 

patterns. It was thus possible to extract information on the 

irrigation requirements of the different mapped crops within 

the test area. This provides decision-makers with 

possibilities of spatial analysis, which were not previously 

available for the water utility. It was concluded that remote 

sensing images serve as trustable information for decision-

making related to crops monitoring and mapping over a pre-

selected test area. Even though multispectral images give 

details on the overall vegetation map in the given area [66], 

this technique is still having a limitation use due to the broad 

wavelength and spatial resolution that imped us 

differentiating crops of similar type. In that specific case, 

hyperspectral images would perform better as they contain 

more concrete and detailed spectral signature [67] and their 

higher spatial resolutions may enable greater distinction of 

vegetation classes [48], [68], [69]. 

 

Results obtained in this study showed that it is possible to 

map agriculture for small areas using RapidEye (5 m) and 

Landsat (30 m) data with overall accuracies of about 84-

95%. In addition, our results showed that water demand can 

be decreased by 10-22% when remote sensing data are used. 

This represents a significant saving portion of the water 

resources that are allocated for irrigation purposes and can 

be used to bring additional land into irrigation within the 

scheme. 

 

We concluded that multi-temporal crop classification and 

mapping provides spatially explicit information of crop 

rotation and crop area data. This approach demonstrates the 

importance of spatial processes in determining water 

allocation in a given irrigation scheme, and in assisting 

decision-making of accounting for the quantity of seasonal 

water requirements that should be allocated by the irrigation 

system. A further validation of the results is planned with 

more reliable ground truth data, available from the annual 

field inspection conducted by the Litani River Authority in 

the selected agriculture parcels from the South Bekaa 

Irrigation Scheme. 
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